1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Sistemas Eléctricos de Potencia

Carrera: Ingeniería Electromecánica

Clave de la asignatura: **EMM - 0532**

Horas teoría-horas práctica-créditos 3 – 2 – 8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Ocotlán del 23 al 27 agosto 2004.	Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Electromecánica
Instituto Tecnológico de Cerro Azul y Delicias	Academias de Ingeniería Electromecánica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Acapulco del 14 al 18 febrero 2005	Comité de Consolidación de la carrera de Ingeniería Electromecánica.	de estudio de la carrera de

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores			
Asignaturas	Temas		
Análisis de circuitos eléctricos II	Análisis de redes de corriente alterna en estado estable Potencia eléctrica Circuitos polifásicos		
Instalaciones eléctricas.	Aspectos Legales y Normas Vigentes Instalaciones Eléctricas Industriales		
Máquinas eléctricas	Máquinas sincronas Transformadores Motores de inducción		
Introducción a la programación.	Archivos		

b). Aportación de la asignatura al perfil del egresado

- Interpretar y aplicar las normas, especificaciones, códigos, manuales, planos y diagramas de equipos y sistemas electromecánicos.
- Analizar, diagnosticar, diseñar, seleccionar, e innovar sistemas electromecánicos.
- Seleccionar, sistemas de protección y medición
- Aplicar paquetes computacionales para el diseño, simulación y operación de sistemas electromecánicos.
- Fomentar el uso racional de la energía.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Seleccionará y calculará los elementos que constituyen un sistema eléctrico de potencia e interpretará especificaciones, manuales y diagramas. Modelará todos sus elementos y calculará las corrientes de corto circuito e interpretará diversos esquemas de protección por relevadores.

5.- TEMARIO

Unidad	Temas		Subtemas
1	Parámetros de líneas	1.1.	Componentes físicos.
	aéreas	1.2.	Resistencia.
		1.3.	Inductancia y reactancia inductiva.
		1.4.	Capacitancia y reactancia capacitiva.
		1.5.	Uso de un Programa computacional.
2	Regulación y eficiencia.	2.1.	
			longitud.
		2.2.	•
		2.3.	
		2.4.	Regulación y eficiencia en línea larga.
			Redes de dos puertos.
		2.6.	Uso de un Programa computacional.
3	Representación de		Diagrama unifilar.
	sistemas eléctricos de	3.2.	Diagrama de impedancia.
	potencia.	3.3.	Cantidad en por unidad y por ciento.
		3.4.	Componentes de corto circuito y
			reactancias de la máquina sincrona.
		3.5.	Cálculo de corriente de falla durante
			corto circuito trifásico en terminales de
			la máquina.
		3.6.	Fenómeno de cortocircuito.
		3.7.	Cálculo de fallas simétricas.
		3.8.	Uso de la matriz de impedancia de
			barra en cálculos de fallas trifásicas.
		3.9.	Uso de un Programa computacional.
4	Cálculo de falla asimétrica	4.1.	•
			Obtención de redes de secuencia.
			Fallas de Línea - tierra.
			Fallas de Línea – línea
			Fallas de Línea – línea – tierra
			Uso de un Programa computacional.
5	Protecciones eléctricas.	5.1.	Esquemas de protección para
			generadores.
			Esquemas de protección para motores.
		5.3.	Esquemas de protección para
			transformadores.
		5.4.	Protección para una línea de
			transmisión.
		5.5.	- 0
		0.1	por sobre corriente.
6	Elaboración de un	6.1.	
	proyecto.		potencia durante el semestre (redes
			aérea o subterránea).

6.- APRENDIZAJES REQUERIDOS

- Análisis de redes en estado estable
- Potencia eléctrica
- Circuitos polifásicos
- Aspectos Legales y Normas Vigentes
- Instalaciones Eléctricas Industriales
- Máquinas sincronas
- Transformadores
- Motores de corriente alterna
- Archivos de programación

7.- SUGERENCIAS DIDÁCTICAS

- Investigación documental y de campo de algunos temas de la materia.
- Manejo de software para el diseño y calculo de líneas aéreas, y para el cálculo de corrientes de falla.
- Organización de sesiones de discusión grupal y conclusión de conceptos
- Visitas a subestaciones industriales para conocer los diagramas unifilares y los esquemas de protección por relevadores.
- Trabajo en equipo
- Elaborar reportes, prácticas, esquemas, tareas, entre otros.
- Realizar prácticas simuladas por computadora
- Uso de software
- Desarrollar un proyecto

8.- SUGERENCIAS DE EVALUACIÓN

- Presentación de reportes escritos y sus conclusiones
- Reportes de las prácticas simuladas por computadora
- Presentación de esquemas que operan en las industrias y su comparación con los estudiados en clase
- Cálculos de fallas con software comerciales y su comparación con los valores de estándares (libro rojo de la IEEE)
- Tareas para discusión en grupo de los resultados obtenidos.
- Presentación del proyecto

9.- UNIDADES DE APRENDIZAJE

Unidad 1.- Parámetro de Líneas Aéreas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante determinará los valores de resistencia, reactancia inductiva y reactancia capacitiva de una línea de transmisión.	 Conocer mediante esquemas o visitas industriales los componentes físicos de las líneas de transmisión aéreas. Calcular el valor de la resistencia de una línea de transmisión aérea, con formulas y con tablas. Calcular reactancia inductiva y su efecto en una línea de transmisión aérea, con formulas y con tablas. Calcular la capacitancia y reactancia capacitiva en una línea de transmisión aérea, con formulas y con tablas. Utilizar programas para el cálculo de parámetros de líneas de transmisión aérea. 	2,3,4

Unidad 2.- Regulación y Eficiencia

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará las fórmulas para calcular la regulación y la eficiencia de una línea de transmisión.	 Distinguir utilizando tablas comparativas los tipos de líneas áreas de acuerdo a su tensión y distancia. Calcular la regulación y la eficiencia de una línea corta desarrollando un programa. Calcular la regulación y la eficiencia de una línea media desarrollando un programa. Calcular la regulación y la eficiencia de una línea larga desarrollando un programa. Emplear el concepto de redes de dos puertos para calcular la regulación de las líneas. Utilizar software comercial para el cálculo de líneas aéreas. 	1, 2, 3, 5, 6, 7

Unidad 3.- Representación de Sistemas Eléctricos de Potencia

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Calculará corrientes de corto circuito simétrico en un sistema eléctrico de potencia.	 Representar en un diagrama unifilar los equipos que componen un sistema eléctrico de potencia. Traducir del diagrama unifilar al diagrama de impedancias, las maquinas y equipos de un sistema eléctrico de potencia. Calcular a partir de los valores reales o de tablas de las maquinas y equipos eléctricos los valores en por ciento y en por unidad. Estudiar el comportamiento de una máquina síncrona para sus diferentes reactancias. Calcular los valores de falla en terminales de una máquina síncrona. Analizar el fenómeno de corto circuito y sus efectos en los sistemas eléctricos. Calcular fallas simétricas en diferentes puntos de un sistema eléctrico de potencia. Utilizar la matriz de impedancia de bus para calcular fallas trifásicas. Emplear un programa de computadora para calcular fallas trifásicas en sistemas eléctricos de potencia. 	1,2,3, 4,6,7 y 8

Unidad 4.- Cálculo de Fallas Asimétricas.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Calcular corrientes de corto circuito asimétricas en un sistema eléctrico de potencia.	 Conocer los componentes simétricos de la corriente y la tensión en un circuito trifásico. Obtener las redes de secuencia de un sistema eléctrico de potencia. Calcular fallas asimétricas de línea a tierra. Calcular fallas asimétricas de línea a línea. Calcular fallas asimétricas de línea a 	2,3,4

potencia.

Unidad 5.- Protecciones Eléctricas.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá los diferentes esquemas de protección de los equipos que conforman un sistema eléctrico de potencia.	 Interpretar las protecciones para un generador eléctrico. Interpretar las protecciones para motores eléctricos. Interpretar las protecciones para transformadores. Conocer las protecciones necesarias para una línea de transmisión aérea. Elaborar e interpretar graficas de coordinación para proteger contra sobre corriente. 	1,2,3 ,5,6,7, 8 y 9

UNIDAD 6.- Elaboración de un Proyecto.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará los conocimientos adquiridos durante el curso para el cálculo de un de sistemas eléctricos de potencia	 Desarrollar un proyecto de sistema eléctrico de potencia a lo largo del semestre, que considere las representaciones en diagramas, conversiones de impedancias, cálculos de valores de falla y sus esquemas de protección. 	1,2,3,4, ,5,6,7, 8 y 9

10. FUENTES DE INFORMACIÓN

- Irwin Lazar. Análisis y diseño de sistemas eléctricos para plantas industriales. Editorial Limusa.
- 2. Charles A. Gross. Análisis de sistemas de potencia. Editorial Interamericano.
- 3. Syed A. Nasar. Sistemas eléctricos de potencia. Editorial Mc Graw Hill.
- 4. William D. Stevenson. *Análisis de sistemas eléctricos de potencia*. Editorial Mc Graw Hill.
- 5. C. Russell Mason. *El arte y la ciencia de la protección por relevadores*. Editorial Cecsa.
- 6. IEEE Recomended practice for electric power distribution for industrial plants. IEEE std. 141-1993.
- 7. An American National Standard. *IEEE Recomended practice for protection and coordination of industrial*. And comercial power systems. Std. 242-1986.
- 8. IEEE Recomended practice for industrial and comercial power systems Análisis. Std. 399-1997.
- 9. Werner G. Doehner. *Esquemas de protección eléctrica*. Comisión Federal de Electricidad.

11. PRÁCTICAS PROPUESTAS.

- 1. Simulación para calcular fallas en sistemas de potencia.
- 2. Ajuste de relevadores inyectando corriente por medio de un equipo de prueba.
- 3. Visita industrial a un laboratorio eléctrico para observar las pruebas a relevadores.