1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Refrigeración y Aire Acondicionado

Carrera: Ingeniería Electromecánica

Clave de la asignatura: EMM - 0531

Horas teoría-horas práctica-créditos 3 – 2 – 8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Ocotlán del 23 al 27 agosto 2004.	Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Electromecánica
Instituto Tecnológico de	Academias de Ingeniería Electromecánica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Acapulco del 14 al 18 febrero 2005	Comité de Consolidación de la carrera de Ingeniería Electromecánica.	de estudio de la carrera de

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores			
Asignaturas	Temas		
Transferencia de calor.	Conducción, Convección y radiación		
Mecánica de fluidos.	Conceptos fundamentales		
Maquinas y equipos térmicos.	Intercambiadores de calor. Compresores.		
Termodinámica	Leyes de la termodinámica Procesos termodinámicos.		

Posteriores		
Asignaturas	Temas	

b). Aportación de la asignatura al perfil del egresado

Analizar, diagnosticar, diseñar, seleccionar, instalar, administrar, mantener e innovar los sistemas de refrigeración y aire acondicionado

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Aplicará los conocimientos de refrigeración y aire acondicionado en la elaboración de cálculos de carga para la selección, instalación, operación, mantenimiento y control de estos sistemas.

5.- TEMARIO

Unidad	Temas	Subtemas
1	Principios de refrigeración.	1.1. Definición y aplicaciones.
		1.2. Ciclo mecánico de refrigeración.
		1.3. Ciclo Carnot de refrigeración.
		1.4. Refrigerantes, lubricantes, tuberías y
		accesorios
		1.5. Diagrama de presión-entalpía
		1.6. Refrigeración por absorción

2	Transmisión de calor y	21	Transmisión de calor en superficies
_	cálculo de la carga de		planas.
	enfriamiento.	2.2.	Cálculo de cargas de enfriamiento.
			Capacidad y selección de equipo.
3	Psicrometría del aire		Introducción
	(propiedades	3.2.	Importancia del aire acondicionado
	termodinámicas)		(enfriamiento y calefacción) en
	,		procesos industriales, requerimientos
			comerciales y de transporte.
		3.3.	Propiedades del aire.
		3.4.	Humedad, humedad relativa, humedad
			específica.
			Entalpía del aire.
			Carta psicrométrica.
			Procesos típicos de aire acondicionado.
			Condiciones del aire de suministro.
4	Condiciones de confort y	4.1.	Reacciones fisiológicas a calefacción y
	calefacción		enfriamiento.
			Carta de confort.
			Pérdida de calor del cuerpo humano.
			Ventilación.
			Cálculo de carga de calentamiento.
5	Ductos.		Selección de equipo. Flujo de aire en ductos.
5	Ducios.	5.1.	5.1.1 Distribución del aire.
			5.1.2 Pérdidas.
		5.2	Diseño de ductos.
		J.Z.	5.2.1 Método de velocidad supuesta.
			5.2.2 Método de caída de presión
			constante o de igual presión.
			5.2.3 Método de pérdidas balanceadas
			de presión.
6	Proyecto.	6.1.	•
			enfriamiento en una instalación
			frigorífica o condiciones de confort en
			un espacio definido (aire
			acondicionado).

6.- APRENDIZAJES REQUERIDOS

- Dominio de Transferencia de calor.
- Dominio de Mecánica de fluidos.
- Conocimiento amplio de Maquinas y equipos térmicos.

7.- SUGERENCIAS DIDÁCTICAS

- Realizar visitas industriales
- Trabajo en equipo
- Realizar investigación documental y de campo.
- Desarrollar prácticas en el taller para conocer y evaluar el funcionamiento de un sistema.
- Realizar talleres de solución de casos prácticos tanto en clase como en laboratorio.
- Formular las características de los programas de mantenimiento.
- Organizar sesiones grupales de discusión de conceptos.
- Desarrollar un proyecto.

•

8.- SUGERENCIAS DE EVALUACIÓN

- Examen diagnóstico
- Reportes escritos de trabajos de investigación y visitas industriales.
- Participación individual y en equipos.
- Reportes de prácticas
- Proyectos de investigación.
- Desarrollo de un proyecto

9.- UNIDADES DE APRENDIZAJE

Unidad 1.- Principios de refrigeración

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante conocerá el funcionamiento del ciclo básico de refrigeración e identificará y describirá los componentes del mismo.	 Identificar el concepto de refrigeración mediante un trabajo de aplicaciones cotidianas. Conocer los diferentes ciclos teóricos de refrigeración (básico, Molliere, Carnot) consultando diferentes fuentes de información y discutir en grupo. identificar los componentes básicos de un ciclo cerrado mediante diagramas. Discutir en clase los tipos de refrigerantes, lubricantes, tuberías y accesorios que caracterizan los sistemas. Conocer la clasificación de los aceites para refrigeración por medio del uso de 	1,4,5, 9 y 10

tablas de especificaciones de fabricantes y hacer una tabla comparativa.	
--	--

Unidad 2.- Transmisión de calor y calculo de la carga de enfriamiento

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará la carga total de calor para un sistema de refrigeración y seleccionara la capacidad de cada uno de sus componentes y sus aplicaciones	 Calcular la cantidad de calor que fluye a través de los muros y superficies planas que caracterizan una instalación frigorífica por medio de la solución en clase de problemas reales Revisar y evaluar otras fuentes de calor necesarias de considerarse para la determinación del calor total; utilizar valores tabulados publicados por diferentes fabricantes de equipo. Seleccionar el equipo adecuado calculando y utilizando la información que generan los diferentes fabricantes de equipo. 	2,3,4, 7,8 y 10

Unidad 3.- Psicometría del aire (propiedades termodinámicas)

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Enunciará las propiedades termodinámicas del aire y empleará los procesos psicrométricos elementales.	 Describir el concepto de aire acondicionado y conocer su aplicación en los procesos industriales. Conocer y aplicar el uso del psicrómetro de honda en el cálculo de la humedad relativa. Manejar la carta psicrometrica para obtener las propiedades termodinámicas y aplicarlas en el acondicionamiento de aire. Calcular procesos reales de aire acondicionado por medio de la solución de ejercicios en equipos de trabajo. 	1,2,4, 6,10 y 11

Unidad 4.- Calefacción.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Evaluará las pérdidas de calor para seleccionar la capacidad del equipo de calefacción.	 Identificar las condiciones de confort por medio de discusiones grupales. Calcular las condiciones de diseño mediante el uso de la carta de confort en la solución de ejemplos grupales. Seleccionar los equipos adecuados para crear las condiciones de calefacción Determinar las características de la carga de calentamiento y ventilación para seleccionar el equipo adecuado. Resolver ejemplos reales y utilizar catálogos de especificaciones de equipos. 	1,2,3, 5,8,9 y 11

Unidad 5.- Ductos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Estudiará el comportamiento del aire con respeto a la presión, fricción y gasto con el propósito de diseñar eficientemente su distribución.	 Resolver problemas en el aula para determinar el método óptimo en el diseño de ductos. Trazar el diagrama unifilar del sistema de distribución de aire por ductos. Plantear un problema, proponer el método de diseño y con base a la propuesta, seleccionar el equipo para dar una solución a la distribución del aire. 	1,7,8, 9 y 11

Unidad 6.- Proyecto de aire acondicionado.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Realizara los cálculos necesarios para diseñar una instalación frigorífica o de aire acondicionado	Diseñar un proyecto que involucre los conocimientos de aire acondicionado o refrigeración según sea el caso	1,7,8, 9 y 11

10. FUENTES DE INFORMACIÓN

- 1. Edward G. Pita. Acondicionamiento de aire. Editorial CECSA.
- 2. Hernández Gombar. Fundamentos de aire acondicionado. Editorial Limusa.
- 3. Grimm. Manual de diseño de calefacción, ventilación. Editorial Mc. Graw Hill.
- 4. Roy J. Dossat. Principios de refrigeración. Editorial CECSA.
- 5. Larriñaga Hernández Saiz. La bomba de calor. Editorial Mc. Graw Hill.
- 6. Fischer and Chernoff. *Aire acondicionado y refrigeración*. Editorial Mc. Graw Hill
- 7. Trane Co. Ltd. Manual de aire acondicionado.
- 8. Carrier. Manual de aire acondicionado. Editorial Marcombo.
- 9. A.R.I. Aire acondicionado y refrigeración. Editorial Prentice may.
- 10. L.L. Threl Keld. *Ingeniería del ámbito térmico*. Editorial Prentice Hall.
- 11. Jenning Lewis. Aire acondicionado y refrigeración. Editorial CECSA.

11. PRÁCTICAS PROPUESTAS.

- Características de la mezcla aire-vapor.
- 2. Ciclo teórico de refrigeración.
- 3. Ciclo real de refrigeración.
- 4. Componentes del sistema de refrigeración.
- 5. Capacidad de un sistema de refrigeración
- 6. Relación de los aspectos importantes en un sistema para el mantener el funcionamiento óptimo del equipo.
- 7. Elaboración y operación del circuito eléctrico de control un sistema de refrigeración.
- 8. Procesos psicrométricos.
- 9. Ventilación.
- 10. Condiciones del aire manejado.
- 11. Determinación de las propiedades psicrométricas del aire.
- 12. Cálculo de la carga de calentamiento ó enfriamiento de un sistema de aire acondicionado.
- 13. Elaboración de un proyecto de refrigeración.