1. DATOS DE LA ASIGNATURA

Nombre de la asignatura: Controles Eléctricos

Carrera: Ingeniería Electromecánica

Clave de la asignatura: **EMC – 0508**

Horas teoría-horas práctica-créditos: 4 – 2 – 10

2. HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de	Representante de las	
Ocotlán del 23 al 27	academias de	Evaluación Curricular de la
agosto 2004.	ingeniería	Carrera de Ingeniería
	Electromecánica de los Institutos Tecnológicos.	Electromecánica
Instituto Tecnológico de Cancún y Delicias.	Academias de Ingeniería Electromecánica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de	Comité de	Definición de los programas
Acapulco del 14 al 18	Consolidación de la	de estudio de la carrera de
febrero 2005	carrera de Ingeniería Electromecánica.	Ingeniería Electromecánica.

3. UBICACIÓN DE LA ASIGNATURA

a) Relación con otras asignaturas del plan de estudio

Anteriores			
Asignaturas	Temas		
Electricidad y M	Ley de Faraday		
magnetismo	Ley de Lenz		
	Autoinducción.		
Mediciones	Mediciones		
mecánicas y	eléctricas		
eléctricas			
Análisis de	Sistemas trifásicos		
circuitos eléctricos	balanceados.		
Máquinas	Motores de		
eléctricas	corriente alterna		
Electrónica II	Métodos		
	algebraicos para		
	el análisis y		
	síntesis de		
	circuitos lógicos		

Posteriores			
Asignaturas	Temas		
Circuitos	Interruptores y		
hidráulicos y	sensores		
neumáticos	Relevador		
	programable		
	Autómata		
	programable		

b) Aportación de la asignatura al perfil del egresado

- Realizar el mantenimiento y diseño de controles eléctricos.
- Analizar, diagnosticar, diseñar, seleccionar, instalar, administrar, mantener e innovar los diversos sistemas de control.
- Seleccionar, instalar y operar sistemas de protección y medición de los controles eléctricos.
- Interpretar y aplicar las normas, especificaciones, códigos, manuales, planos y diagramas de controles eléctricos.
- Aplicar tecnología de vanguardia a la solución de problemas de controles eléctricos.
- Aplicar paquetes computacionales para la simulación y operación de sistemas de control por relevadores programables y controladores lógicos programables

4. OBJETIVO(S) GENERAL(ES) DEL CURSO

 Diagnosticará y resolverá específicamente problemas de controles eléctricos aplicados a procesos electromecánicos. • Diseñará los controles con base en los dispositivos electromagnéticos, con relevadores programables y con controles lógicos programables.

5. TEMARIO

Unidad	Temas		Subtemas
1	Fundamentos de controles	1.1	Contactores y arrancadores.
	eléctricos	1.2	Relevadores electromecánicos.
		1.3	Temporizadores (al energizar y al
			desenergizar).
		1.4	Solenoides.
		1.5	Diagramas de alambrado y de control.
		1.6	Protección contra sobrecarga de
			motores.
		1.7	Protección contra corto circuito y falla a
	A	0.4	tierra de motores.
2	Arrancadores para motores	2.1	Control a dos y tres hilos.
	de corriente alterna	2.2	Control Manual Fuera Automática
	trifásicos	2.3	Control Manual-Fuera-Automático. Arrangue a tensión plena.
		2.4	Métodos de arranques a tensión
		2.5	reducida (autotransformador,
			estrella-delta, resistencia primaria y
			resistencia secundaria, bobinado
			bipartido).
		2.6	Inversión de giro.
		2.7	Avance gradual.
		2.8	Frenado.
3	Interruptores y Sensores	3.1	Interruptores (presión, nivel,
			temperatura, flujo, límite).
		3.2	Principio de transducción.
		3.3	Sensores de presión.
		3.4	Sensores de flujo.
		3.5	Sensores de temperatura. Sensores de nivel.
		3.7	Sensores de peso, velocidad,
		3.7	conductividad, PH, etc.
		3.8	Criterios para la selección de un sensor.
4	Relevador Programable	4.1	Característica principales del relevador.
		4.2	Aplicaciones típicas.
		4.3	Cableado.
		4.4	Programación.
5	Autómata Programable	5.1	Definición y estructura básica.
	(PLC)	5.2	Principio de funcionamiento.
		5.3	Tipos de PLC (compactos y modulares).

			Lenguajes de programación. Instrucciones tipo relevador, temporizadores y contadores. Aplicaciones del PLC en sistemas de control.
6	Proyecto Electromecánico	6.1	Elaborar un proyecto de un sistema electromecánico aplicando los PLC's.

6. APRENDIZAJES REQUERIDOS

- Ley de Faraday
- Ley de Lenz
- Autoinducción.
- Uso del multímetro, amperímetro, voltímetro y Vatímetro.
- Sistemas trifásicos balanceados.
- Motores de corriente alterna
- Métodos algebraicos para el análisis y síntesis de circuitos lógicos

7. SUGERENCIAS DIDÁCTICAS

- Uso de software.
- Visitas a empresas.
- Trabajo en equipo.
- Asistir a conferencias y exposiciones.
- Consulta de catalogo de fabricantes
- Desarrollar un proyecto
- Realizar investigaciones

8. SUGERENCIAS DE EVALUACIÓN

- Alternar exámenes escritos con presentaciones
- Informes sobre las visitas a empresas.
- Informes sobre investigaciones
- Participación individual y en equipo.
- Reportes, trabajos y prácticas.
- Entrega del Proyecto

9. UNIDADES DE APRENDIZAJE

Unidad 1: Fundamentos de controles eléctricos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante conocerá los elementos de fuerza y de control, y seleccionará las protecciones elementales para los motores eléctricos.	 Identificar las partes de un arrancador magnético combinado. Identificar y conocer la función de cada relevador en el control y protección de los motores. Seleccionar y calcular los principales elementos de protección para motores. Conocer los arrancadores de protección total de motores. Ilustrar mediante un diagrama la simbología estandarizada americana y europea en sistemas de fuerza y control eléctrico. 	1, 3, 11

Unidad 2: Arrancadores para motores de corriente alterna trifásicos.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Diseñará e interpretará sistemas de control para motores de corriente alterna trifásicos.	sistema americano y europeo. • Distinguir los sistemas de control	1, 2, 3, 9, 10

Unidad 3: Interruptores y sensores

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá y seleccionará los diferentes elementos de control como son los interruptores, sensores y el principio de funcionamiento de los transductores.	 Consultar los catálogos de fabricantes y discutir en clase el funcionamiento y las aplicaciones prácticas de los interruptores de: presión, nivel, temperatura, flujo e interruptores de límite. Describir el funcionamiento de transductores analógicos-digitales y digitales-analógicos, utilizando esquemas. Analizar, seleccionar y aplicar los diferentes tipos de sensores para sistemas de control. 	3, 8, 12, 13

Unidad 4: Relevador Programable

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá en función de los diferentes tipos de relevadores programables comerciales sus características, programación y aplicación.	 Consultar los catálogos de diferentes marcas para conocer los tipos más comunes de relevadores programables. Realizar prácticas utilizando la programación del relevador programable. Efectuar prácticas de cableado con relevadores programables 	3

Unidad 5: Autómata programable (PLC)

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Comprenderá la construcción y el funcionamiento de los controladores lógicos programables y los aplicará para resolver problemas de control de sistemas básicos .	 Investigar en fuentes de información la función de un PLC y establecer sus posibles aplicaciones en la industria. Elaborar un dibujo con la descripción general de los componentes básicos de un PLC (entradas, salidas, CPU, memoria, fuente de alimentación y dispositivos de programación). Establecer las diferencias entre la estructura compacta y la estructura 	14, 15, 16

 modular de un PLC. Establecer los lenguajes de programación que existen para un PLC. Direccionar las entradas, salidas, temporizadores, contadores y relevadores internos, de diferentes fabricantes de PLC's. Diseñar sistemas controlados por PLC 	
que sustituyan a controles eléctricos cableados con lógica por relevadores y	
aplicarlos a un sistema de control.	

Unidad 6: Proyecto electromecánico

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Elaborará un proyecto para un sistema de control de tipo electromecánico aplicando PLC's.	 Desarrollar diagramas de alambrado de los sistemas de control para automatización. Programar la simulación de problemas de automatización reales, para un proyecto consistente en: Diagrama elemental. Selección de dispositivos. Diagrama de alambrado. Construcción y simulación de la operación. Presentar los resultados del proyecto 	3

10. FUENTES DE INFORMACIÓN

- 1. Siskind, Charles S. *Electrical Control System in Industry. Editorial* Mc. Graw Hill.
- 2. Square D. Diagramas de alumbrado.
- 3. Catálogos e instructivos de productos eléctricos de las marcas.
 - Square D
 - Siemens
 - Telemecanique
 - IUSA
 - Federal Pacific
 - Allen Bradley
- 4. Anderson, Paul T. Protección de motores por medio de relevadores de sobrecarga térmicos Equipos IEM S.A. de C.V.

- 5. Norma Oficial Mexicana NOM SEDE 1999. relativa a instalaciones eléctricas.
- 6. National Electrical Code (NEC).
- 7. Roe, Lionel B. *Practical Electrical Project Enginering. Editorial* Mc. Graw Hill.
- 8. Brighton, Robert J., Renade, Prashant N. Why overload relays do not always protect motors. U.S.A., IEE Transactions on Industry Applications Vol 1A-18. No. 6.
- 9. Millermaster. Electrical control motor.
- Experimentos con equipo eléctrico, Control de motores industriales. Wildi de Vito.
- 11. Harper, Enriquez. ABC de Instalaciones Eléctricas Industriales. Eduitorial Limusa.
- 12. Creus Antonio. Instrumentación industrial. Editorial Alfaomega.
- 13. Cooper, William D. y Helfrick, Albert D. *Instrumentación Electrónica Moderna y Técnicas de Medición*. Editorial Prentice Hall.
- 14. Balcells, J. y Romeral, J.L. *Autómatas Programables*. Editorial Alfaomega marcombo.
- 15. Ackermann, F R. y Franz J. Controles Lógicos Programables. Festo Didactic.
- 16. Bradkey, Allen. Manual de controladores lógicos programables

11. PRÁCTICAS PROPUESTAS.

- 1. Elaborar con dispositivos electromecánicos y con sensores, sistemas de control.
- Diseñar control con relevadores.
- 3. Diseñar arranque de motores.
- 4. Aplicar los relevadores programables en los controles eléctricos
- 5. Realizar controles con autómatas programables.